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A method for obtaining accurately the Fourier transform of continuous data is developed. 
A discrete time series is generated by uniformly sampling the data during a finite period. The 
method is based on cubic-spline approximation of the data. An anaiytical expression for the 
Fourier coefficients is derived in explicit form. The fast Fourier transform (FFT) algorithm is 
used in the numerical computations. A new procedure to estimate spectrum and correlation 
functions for continuous random data is developed. The intrinsic properties of the procedure 
are clarified through a series of test computations. 

1. INTRODUCTION 

Spectral analysis of random data reveals statistical properties of dynamical 
systems in many fields of science and engineering. Most of the methods used for 
performing Fourier transform are based on the fast Fourier transform (FFT) 
technique for a discrete time series [ 11. With the aid of the FFT. both spectrum and 
correlation functions are rapidly computed. The numerical integration rule of the 
FFT is equivalent to the trapezoidal rule with additional properties [2], and, hence, 
gives very crude results for finite Fourier integrals. -4 simple method for improving 
accuracy in the use of the FFT is presented by Abramovici [3], who proposes a 
trapezoidal FFT which does not require a time series to be periodic over an 
integration interval. Removal of a linear trend improves the accuracy of the FFT 
results. 

Accordingly, for better accuracy, a higher-order numerical quadrature formula is 
used, though computational speed is sacrificed in some degree. The classical 
quadrature for this type of integral is Filon’s method [4] which reduces to Simpson’s 
rule when a frequency is equal to zero. An extension of Filon’s method is found in 
[ 5 J? in [6 ] where fifth-degree polynomials are used, and in (7 ] where speed and 
accuracy are achieved by associating the FFT with Filon’s method. Results using 
Filon’s method are accurate only for small values of frequency or for a reasonably 
smooth integrand. This restriction is due largely to the fact that the derivative of the 
parabola approximation is discontinuous at every two sampling points. A promising 
approach is to obtain a continuous approximate function passing through ail data 
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points smoothly. Ostrander [8] proposes the use of a spline-function approximation 
in finite Fourier transform and shows how even a linear-spline interpolation reduces 
errors introduced by the discrete Fourier transform. Numerical evaluation of Fourier 
integrals with help of B-spline is presented by Lax and Agrawal [ 111. Their method is 
particularly useful as a Fourier transform when the input function, whose Fourier 
integral is desired, has jumps in value, in slope, or in higher derivatives. Several 
applications of the method show that proper nonuniform spacing of knots, which 
optimizes a B-spline fit to the function, produces highly accurate results. 

The purpose of the present paper is twofold, i.e., (1) to develop an efficient 
numerical method for obtaining accurate results of finite Fourier transform from a 
discrete time series (xn}, and (2) to apply this method to the estimation of spectrum 
and correlation functions for continuous data of time having sample values {x,~). The 
method, to be referred to as the spline-function method @FM), is based on replacing 
{x~} with a smooth interpolation curve using a natural cubic-spline function. An 
advantage of spline interpolation is that a criterion of smoothness is apparent in the 
sense of the minimum curvature property, and that strong convergence of the spline 
approximation to an approximated function as a sampling interval approaches zero 
has been also proved [9]. The finite Fourier transform of the spline-function approx- 
imation is performed analytically and obtained in an explicit form. The expression of 
complex Fourier series allows the use of the FFT in numerical computations. A 
significant improvement in numerical accuracy is also achieved by use of a few extra 
points at the boundaries of the integration interval, in order to diminish the influence 
of the condition on the end derivatives [lo]. On the basis of the spline-function 
method, a new procedure for the spectral estimation is then developed. A series of 
quantitative tests on spectrum and correlation functions clarifies the intrinsic 
properties of the procedure and the spline-function method, such as, for example, the 
accurate estimation property especially to a slowly-varying signal, the strong 
convergence property with an increase in the sampling rate, and the low sensitivity to 
round-off errors. 

2. SPLINE-FUNCTION METHOD OF FOURIER TRANSFORM 

The discrete time series taken here is samples of data generated from a continuous 
signal x(t) of time t with an equidistant sampling interval h, and denoted as {x,[) 
where the integer n is the time index, i.e., t = nh for n = 0, 1, 2,..., N. To approximate 
x(t), a cubic-spline function is used, which interpolates all the values {x,) smoothly 
in the sense of both minimum curvature and numerical stability due to round-off 
errors. The required expression S(t) for the cubic-splines can be obtained by the 
following conditions [ 91: 

(a) The function S(t) is a picewise polynomial of degree 3 such that 

s(t) = a,(t - n/z)3 + b,(t - n/z)* + c,(t - nh) + d, 

in each interval nh < t < (n + l)h for n = 0, 1, 2 ,..., N- 1. 

(1) 
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(b) The function s(t) passes through the values {x~} so that 

S(nh) = X,) i.e., d, = x, for n = 0, 1: 2,..., N. (2) 

(c) The first and second derivatives are continuous at i = ?rk for 
n = 1, 2,..., N - 1, which condition yields 

a, = (Mn + , - M,,)/6h, (3) 

6, = M,P, (4) 

c, = 44, h/3 - M, + 1 h/6 + (xn + , - x,)/h, (3 t-J : 

where A4, is the second derivative at t = nh such that 

MO = M,v = 0 as natural cubic-spline, 

M,r = 3hp2 5 (A,,*i-l - 2An,i + Anqi+ I)*‘i 
<x0 

(6) 

for I1 = 1, 2,...,N- 1, (7) 

with 

A n,-I =A -An..\=A,,,~+, =o, n,o - (8, 

E=7-4&(0<&<1). (10) 

Note that the second derivatives (6) at the end points are introduced to obrain the 
best cubic-sphnes of interpolation in the sense of the minimum curvature property. In 
some cases, however, such a specific condition on the end-derivatives influences the 
numerical accuracy of the Fourier integrals: a few examples will be given later. To 
diminish this influence, a few extra points at the boundaries are used. Then the time 
series (~~1 of length N + 1 is composed of N, extra points at each boundary and of 
N, + 1 points used for the Fourier transform, that is, 

N+ 1=2N,+(N,+ I). (13) 

Figure 1 illustrates the composition of the time series J,x,). 
Then the Fourier transform of the sline fit S(t) is defined by the formula 
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a A TIME SERIES IX,1 OF SIZE N+l - 

n=O 1 2 3 4 N-4 N-3 N-2 N-l N 
. ___------_-- . . . L 

t = 0 
Neh Neh+Nfh Nh 

< f-------------------, 

N, EXTRA A TIME SERIES OF SIZE Nf+l N, EXTRA 

POINTS FOR FOURIER TRANSFORM POINTS 

FIG. 1. Composition of the time series (x,) of length N + 1 for use in Fourier transform. An 
example of N, = 3 is shown. 

where T is the integration interval given by T = Nrh. The Fourier integral is rewritten 
as 

F(J)= T-’ (13) 

Substituting S(t) of Eq. (1) in Eq. (13) and integrating with respect to f, the explicit 
Fourier coefficients become 

N,+Nf- 1 N,tNf-l 

F(f) = N;‘g,(f) c a, epiznfhn + N;‘g,(f) c b,,e-i2nfhn 
n=N, n=,ve 
N,+Nf- 1 Ne+Nf- I 

+ N;‘g,(f) C c, e-i2nfhfhn + N;‘g,(f) r dnepi21rfhn, (14) 

where gj(f) for j = 0, 1, 2, and 3 is an analytic function of frequency f, and readily 
obtained by evaluating the itegral 

gj(f) = )_’ $e pi2nfhr dt. 
c 0 

(15) 

Formula (14) numerically computes Fourier coefficients of complex value. There 
are two main ways of doing this: (1) Compute directly the right-hand side of Eq. (14) 
for arbitrarily selected values of frequency f and sample size N,. This entire 
calculation, however, is likely to require lengthy computation times due to the four 
kinds of summation, especially when made for various frequencies and large sample 
size. (2) Introduce the FFT algorithm for computing the summations in formula (14). 
This calculation is limited to the case where the size N, is equal to an integer power 
of 2. Nevertheless, a significant reduction in computation time is achieved. 
Furthermore, a set of Fourier coefficients for such frequencies that 

j- =k/T for k = 0, 1, 2 ,..., N,/2, (16) 

where the upper frequency limit is 1/2h, i.e., the Npquist frequency, is easily 
obtained. 
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The finite series of Fourier coefficients’thus obtained is insufficient to reproduce 
x(t), because it is represented by an infinite Fourier series as 

k=-cc 

N,h<t<N,h+ T. f( I 7) 

In practice, the number of required Fourier coefficients will be limited, and, in some 
cases, may be the same degree with N,/2. In this case, formula (17) with summation 
for k from -N,/2 to N,/2 is used in order to assess the approximation to x(l) at 
discrete time f = nh for n = N,, N, + 1, N, + 2 ,..., N, + N,. This assessment can be 
easily performed by use of an FFT algorithm. 

3. PROCEDURE FOR SPECTRAL ESTIMATION 

The spline-function method of Fourier transform produces a new procedure for 
estimating spectrum and correlation functions for the continuous-time signal xi;). The 
main steps of the procedure are summarized in the flow graph in Fig. 2. An ordinary 
procedure applicable to discrete time series (x,,} is also shown for reference. Pre- and 

PRESENT PROCEDURE 'GQOINARr "WXEUURE 

UNIFORMLY SAMPL It11 

SPLINE INTERPOLATION 

BY' INTEGRATION 

SPLINE-FUNCTI3N METHOO FAST FOURIER TRANSFORM 

SF FWRIER TRANSFORM ~FFT) AL,;OX!THM 

FIG. 2. A graphic representation of the present procedure for estimating the spectral and correlation 
functions for the noise signal x(t). Also shown is an ordinary procedure used for the discrete time serves 
/-ye 1. 
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post-processing modes such as trend removal and time- or spectral-window operation 
are excluded. The following development is confined to an analysis of one- 
dimensional process represented by Ix,}. 

The set of the Fourier coeffkients F(f) calculated numerically using the spline- 
function method is used to obtain the power spectrum PSFM(f) and the phase 
spectrum q&,(f), namely, 

PSFM(f) = wTf)l’ (l/Hz), (18) 

hdf) = arctan(Im[P(f)I/Re[P(f)l). (19) 

The correlation function for continuous lag time r is defined in terms of the spline 
fit S(t) for the period from N,h to (N, + N,)h (see Fig. l), such that 

R,,,(t) = (T- r)-l fNeh+=- qt + r) S(t) dt, O<Z<T. (201 
. N,h 

The integral in Eq. (20) is solved analytically by substituting S(t) of Eq. (1) in the 
integrand and integrating with respect to t. Detailed procedures for the integration are 
described in Appendix A. An explicit expression of R,,,(r) is given by Eq. (A.8). In 
particular, in the case of discrete values of z such as r = mh for m = 0 or integer, the 
correlation function becomes considerably simpler: 

R,,,(mh) = (N, - m-l ~~~ [U,ajh6/7 + (~,bj + b,aj) h’/6 

+ (aicj + b;bj + ciaj) h4/.5 

+ (aidj + bicj + c,bj + d,aj) h3/4 + (bjdj + cicj + dibi) h’/3 

+ (Cidj + d,cj) h/2 + dfdj], (21) 

where 

i=N,+n+m and j = N, + n. 

Two comments on the results (18) through (21) follow. (1) The continuous 
correlation function (A.8) is used to determine the corresponding spectral density. It 
is necessary to begin with uniformly sampling the function (A.8) at equidistant time 
intervals to obtain a time series as discrete representation of the function (A.8). The 
Fourier transform of the time series is determined using the spline-function method, 
and gives the desired spectral estimate. (2) The significance of the results (18) 
through (21) is easily understood by showing how these results are reduced to the 
corresponding ones used in ordinary procedures for spectral estimation. Provided that 
splines of degree zero are applied to the interpolation of the time series (s,,}, the 
result in the rlth interval is 

S(t) = A-,. (22) 



SPLINE APPROXIMATION OF TIME SERIES 99 

This corresponds to Eq. (1) with a,, = 6, = c, = 0 and is equivalent to using a 
trapezoidal rule in interpolation. Thus the familiar expression for Fourier coefficients 
is 

The power spectrum PFFT(f) and the phase spectrum 4&f) which arise in an FFT 
procedure are rapidly computed by use of the FFT in the calculation of Eq. (23). The 
correlation function (21) reduces to the form associated with a Blackman-Tukey 
procedure, as shown by 

Allowing cyclic use of (x~) such as x~\,~+~ = x,~~+.\~~+~ produces another expression 
R,,,(mh) for correlation function as is usual with an FFT procedure. 

4. INTRINSIC PROPERTIES OF THE SPLINE-FLTNCTION METHOD 

The spline-function method has been applied to a set of artificial time series 
generated from uniform sampling of various deterministic functions. The functions 
and sampling conditions are listed in Table I. All the time series are classified 
conveniently into five major groups; hereafter they will be represented by the symbol 
(x,], (I = 1,2,3,4,5). The sample size Nr is always taken to be equal to an integer 
power of 2, since the FFT algorithm can be fully utilized in calculating Eq. (14). The 
computations were done on a FACOM-382 in single precision, about seven 
significant decimal digits. 

4.1. Intrinsic Properties on Power and Phase Spectra 

The spectra P,,,(f) and #s&f) have been compared with the exact results P,(S) 
and 4,(f) which are calculated directly from the functions listed in Table I. The 
comparison is made in terms of the relative deviations of PSrhI(f) and q,,,,(f) from 
the exact ones, i.e., 

G&-) = I PSFM(f) - PEU-)l/PEV)I x 100 WI, (25) 

K&M(f) = I h&Tvdf) - TMf)ll!h(f)l x 100 (%I* (26) 

For reference, another comparison is given of P&f) and #&JC) with the exact 
ones, such that 
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TABLE I 

Test Functions and Sampling Conditions for Producing Artificial Time Series 

k%lr 
Test functions 

of time t 

Sampling conditions 

h 6) N + 1 (N,, NC)” a (sm’),fO (Hz). and 19 (rad) 

65(0,64) 
71(3,64) 
75(5,64j 

65(0,64) 
7 l(3, 64) 

kl, cos(27zZ0r + e) 0.1 71(3, 64) 

kl? e-“’ cos(2n&t + 0) 0.2 39(3, 32) 
0.1 71(3,64) 
0.05 135(3, 128) 
0.025 263(3,256) 

hl)5 e-“‘cos(2lrf,t + 8) 0.1 71(3,64) 

a = 0.25, 0.5, 1, 2, 5 

f. = 0.9375,19 = -2nfoNeh 
+O. 125al for integer I 
from 0 to 16 

f. = 0.156251 for I= 6, 7, 
8, 9, 11, 13, 16, 21, 32 
0 = -2nfohNe + 0.25~ 

a = 2.0 
f. = 0.9375 
0 = -2nfo hN, + 0.25~~ 

a = 2.0, f, = 0.15625 x 2’ 
for I = -co, -5, -4 ,..., 3, 4 
0 = -2nfo hN, 

’ The mutual relation of N, N,, and Nr is given by Eq. (11) and shown in Fig. 1. 

The computation time in calculating the spline fit is minimized by computing II,,~ 
only for values of 1 n - iI not exceeding integer j, thus taking A,,i = 0 for 1 n - iI > j. 
The value of j is decided in terms of the convergence of PSFM(f) and $sFM(f) 
calculated from the time series {x,}~ with individual values of j varying from zero up 
to 10. Figure 3 shows the two kinds of ratios with respect to P,,,(f) and q&(f): 
the ratios of the relative deviation D&(f) computed for each j to that for j = 10 
and the ratios of D0 s&f) for each j to that for j = 10. The results of these 
calculations enable us to decide to take j = 8, which is adopted in the following 
analysis. 

(1) Influence of the end condition (6). The influence of the end condition (6) on 
spectral estimates is studied by varying the size of extra points N, but keeping the 
sample size Nf constant (see Fig. 1). Figures 4 and 5 illustrate DcFM(f) and DgFM(f), 
respectively, obtained from {x,}, for N, = 0, 3, and 5. Also shown are D&(f) and 
D&(f) for reference. The introduction of only three extra points is found to improve 
the numerical accuracy remarkably. For the smaller values of a, no distinct 
deviations in spectral estimates are observed. The effectiveness of a few extra points 
is demonstrated by spectral analysis of {xn}* which obtains spectral estimates of 
x(t) = cos(2rfOt + 0) by systematically varying the initial phase 8. Figure 6 illustrates 
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FIG. 3. The convergence of the spectra PSFM(f) and d,,,(f) with an increase in j. 
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FIG. 4. The influence of the end condition (6) on power spectrum. Shown are the relative deviations 
D{,,(f) for IVY = 0, 3, and 5, together with Dp 
Ix,}, in Table I. 

,&f). The numerais shown correspond to those of u of 
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FIG. 5. The influence of the end condition (6) on phase spectrum. Shown are the relative deviations 
D&Jf) for N, = 0,3, and 5, together with Di &f). The numerals shown correspond to those of a of 
(xn}, in Table I. 
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FIG. 6. The influence of the end condition (6) on the peak of power spectrum at frequency of 
f, = 0.9375 Hz. Shown are the relative deviations Dp sFMGfO) for N, = 0 and 3, together with D&GfJ. 
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D&&J at a frequency off0 = 0.9375 Hz for IV, = 0 and 3, together with D&(&L 
It is clear that using three extra points results in uniformly accurate power spectrum 
for all values of 8. Also, for IV, = 0, D!&,&) b ecomes maximum when 8 is equal to 
zero (i.e., x(O) = 1) or to 71 (i.e., x(0) = -1). This is due to the deviation of the spline 
fit S(t) from the original function x(t) at the end points, which strongly affects the 
finite Fourier integral (12). 

(2) Estimation property to the periodic signal. As shown in Figs. 4 and 5, the 
spline-function method produces spectral estimates with small relative deviations not 
exceeding 0.5 %I in the case of IV, = 3, while the FFT gives rise to a large relative 
deviation. Figure 6 shows that the FFT method produces almost exact answers, while 
the spline-function method indicates constant relative deviations of about 0.035 c/b. 
These results imply as follows: (a) The spline-function method is suitable for use in a 
slowly varying time series relative to a sampling interval h such as? for example, 
{xnjI and {.x~}~ : the analysis of the latter will be presented later. (b) The FFT is good 
to estimate the frequency with which the signal x(t) varies periodically. 

The above properties of both methods have been checked for a peak of the spectral 
estimates calculated from {xn } 3. The relative deviations are obtained for various 
values of the frequency f0 where the initial phase of the test function maintains a 
constant value of 0.25~ The resultant relative deviations are plotted in Fig. 7 against 

lo2 - LIP SFM(‘O’ 

. 
10 DPFFT(fO) 

A DtFT(fO) 

10 8 6 4 2 

SAMPLE SIZE PER ONE PERiOD fg’!h 

FIG. 7. The relative deviations of spectral estimates from the exact ones for various values of the 
frequency& listed in Table I under the item of (xni3. 
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the number of sampling per one period, i.e., JO-‘/h. The results DcFM(fO) are observed 
to approach D&(fJ with an increase in f,-l/h, thus indicating the above-mentioned 
properties. It can also be seen that the accuracy of the phase spectra is about the 
same for both methods. 

(3) Convergence property. The convergence of spectral estimates to the exact 
ones depends ultimately on the smoothness of the original signal x(t) which is relative 
to the sampling conditions such as the interval h and the size Nf. An example of this 
has been given in Fig. 7 with respect to fast convergence by varying the frequency fO 
of the periodic signal, but keeping Nf constant. Another example is chosen to 
illustrate how the spline-function method improves in accuracy as h decreases under 
the condition of keeping hN, constant. The next spectral analysis is given of (.x~}~. 
The results of the analysis are shown in Figs. 8 and 9 in terms of the relative 
deviations of power and phase spectra, respectively. It is readily seen that the spline- 
function method has a good property of convergence for both spectral estimates over 
the wide frequency range from zero to the Nyquist frequency. The results of the cases 
3 and 4 for frequency above 5 Hz are not presented. Distinct difference in rate of 

I ’ .-- ,---'cASE 1 

CASE 4 < 1O-3 % 

0 1 2 3 4 5 

FREQUENCY f (Hz) 

FIG. 8. The convergence property of the power spectra with an increase in sampling rate l/h under 
the condition of hN, = constant. Shown are the relative deviations D&(f) and D&(f) for the four 
different cases: case 1 of h = 0.2 s and Nr = 32, case 2 of h = 0.1 s and N, = 64, case 3 of h = 0.05 s and 
N,= 128, and case 4 of h = 0.025 s and NC= 256. 
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0 1 2 3 4 5 

FREQUENCY f (Hz) 

FIG. 9. The convergence property of the phase spectra with an increase in sampling rate l/h under 
the condition of hN,= constant. Shown are the relative deviations D&,,(f) and DC,,(f) for the same 
cases as described in Fig. 8. 

convergence between the two methods is observed, due mainly to the excellent inter- 
polation property of the spline-function method in comparison with the FFT based on 
trigonometric approximation of a time series {x,}. 

4.2. Intrinsic Properties on Correlation Function 

As time-domain assessment of the present procedure, a correlation analysis has 
been performed of {xnls. A typical example of the analysis is presented in Fig. IO for 
f, = 0.039 1 Hz, which illustrates the exact correlation function R,(t) calculated using 
the definition (20), and the relative deviations from RE(t) such that 

Dgnh) = / [R,(mh) -I?,(nzh)]/R,(mh)~ x 100 (%), (29) 

where X is the subscript indicating the present procedure by SFM, the Blackman- 
Tukey procedure by BT, and the FFT procedure by FFT. The results D&,(&z) 
show negligible relative deviations. Most of DR sFM(mh) for other values off, are also 
found to be much the same, though they are not presented here. It is convenient to 
express D&,(mh) as well as D&(d) and D&,(mh) in terms of the average 0: and 
the standard deviation 60: from D:, given by 
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,...***” 
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. 
..** 

DFFThh) 
. 

l * 
.- 

. 
. I 

0 0.8 1.6 2.4 3.2 

LAG TIME T (Sj 

FIG. 10. A typical example of the correlation-function analysis of (xnls for f, = 0.0391 Hz. Shown 
are the normalized exact correlation function R,(r)/R,(O) and the relative deviations Dt(mh) for 
X= SFM, BT, and FFT. 

DR, = M- ’ c D;(mh), 
m=O 

(30) 

112 

80; = M-’ 5 (D$nh) -D:)‘] , (31) 
m=O 

where the maximum lag M is taken to be equal to one-half the sample size, i.e., 
M= 32. 

Figure 11 shows each of 0:: and Df: f SD; against the set of values of the 
frequency f. ranging from zero up to one-half the Nyquist frequency. The present 
procedure gives the best approximation to the required answer R,(t) within an 
average relative deviation of less than 0.03 %, except for the case off, = 2.5 Hz. The 
Blackman-Tukey procedure produces considerable deviations especially for the larger 
values off,. This is due to the trapezoidal approximation of the integral (20). The 
large deviations of the FFT procedure are due to two major causes: In the region of 
f, 2 0.08 Hz, i.e., smaller sampling rate per one period fop’, it is attributed to much 
the same with the results of the Blackman-Tukey procedure. In the other region, it is 
caused by whether or not the circular correlation function is used. 
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TT?S 
Ill I/ 

BY FFT 

1 BY B 

,i 

(0) 10 
-2 10-l I i0 

FREQUENCY fg (Hz) 

FIG. 1 I. The variations in the relative deviations of the correlation functions R,(mh) from R&h) 
for the various values of the frequencyf, listed in Table I under the item of jx, j 5. Shown are the average 
relative deviations 0: and the error bars DC rt SD; for the present procedure (X= SFM!. the 
Blackman-Tukey procedure (X = BT), and the FFT procedure (,X = FFT). 

5. CONCLUDING REMARKS 

(a) A new method has been developed for estimating the finite Fourier transform 
of a continuous-time signal x(t) based on a cubic-sphne interpolation to {xn} and an 
analytic integration of the spline functions. The method does not require x(t) to be 
periodic over an integration interval. 

(‘I) To obtain better numerical accuracy of the spectral estimates such as power 
and phase spectra, the use of a few extra points is effective, thereby diminishing the 
influence of the extraneously introduced second derivatives at the end points. Another 
improvement of accuracy occurs with an increase in sampling rate during the fixed 
period of sampling. 

(c) Explicit expressions for the Fourier coefficients F(f) result in a significant 
reduction in the number of computations, together with a low sensitivity to round-off 
errors. Use of the FFT algorithm in numerical calculation of F(f) leads to a further 
reduction in computation time. 
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(d) The present procedure for spectral analysis is useful for gaining accurate infor- 
mation about original random data x(t). It may be used in assessing the spectral 
estimates from various approachs to noise-signal processing. 

APPENDIX A 

The explicit expression for the correlation function R s&r) is obtained as follows. 
A continuous lag time r may be written in the form 

t = mh + ch, (A-1) 

where m is a maximum integer not exceeding r/h and 0 < E < 1. Then the spline fits 
S(t + r) and s(t) in the integrand (20) lie in the integration intervals 

Neh+mh+ch<t+r<Neh+Nfh and N,h<t<N,h+N,h-mh-ch, 

(A.21 

where T = N,h is used. Since the spline fit is defined in each interval as in Eq. (l), it 
requires that the product S(t + r) s(t) is evaluated in each of the subintervals which 
are divided into two parts: a series of subintervals of size (1 - c)h such that 

(N,+m+n+~)h<t+t<(N,+m+n+l)h 

and (A.3) 

(N, + n)h < t < (N, + n + I- c)h, for n=0,1,2 ,..., N,-m-l, 

and a series of subintervals of size ch such that 

(N, + m + n + 1)h < t + r < (N, + m + II + 1 + E)h 

and (A.41 

(N,+n+ l-c)h<t<(N,+n+ l)h, for n=O, 1,2 ,..., N,-m-2. 

Then the integral in Eq. (20) is rewritten in the form 

R,,,(r) = (T- z)-’ 
“ff, I ,I’ -EM 

S(N,h + mh + nh + ch + t) 

. S(N,h + nh + t) dt 
Nf-m-2 .& 

+(T-r)-’ c j S(N,h+mh+nh+h+t) 
n=o 0 

.S(N,h+nh+h-&h+t)dt. (A.5 > 
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Substituting S(t) of Eq. (1) in Eq. (AS), we have 

Nf--m--l .(l-E)h 

R,,,(7) = (T- 7)-’ r 
I “50 0 

[Ui(&h + t)3 + b,(Eh + t)’ + Ci(Eh + l) + dif 

. [~jt’ + bjt2 + Cjt + dj] dt 

Nf-m-2 +& 
+(T-7)-l C j [a,t3+bkt2+ckt+dk] 

n=o 0 

. [~j(h - &h + t)3 + bj(h - oh + t)’ + cj(h - &h + t) + dj] dt, (A.6) 

where 

i=N,+m+n, j=N,fk and k=N,+m+n t 1. (A.7) 

Integrating with respect to t, we get the desired expression 

Nf-m-1 
R,,,(s) = (N, - m - e)- l To [UiCTj(l - &)7h6/7 

+ (Uibj t s;‘(~h) ~j/2)(1 - ~)~h’/6 

t (Sf(~h) aj t S;(ch) bj/2 + aicj)(l - &)jh4/5 

t (Si(Eh) Uj t S:(&h) bj + So cj/2 + aidj)(l - ~)“h~/4 

t (Si(Eh) bj t Sf(&h) cj t sol’ dj/2)(1 - &)‘h’/3 

t (Si(Eh) Cj t Of dj)( 1 - &)‘h/2 + Sip dj(l - E)] 
Nr-m-2 

t (A+-m-E)-’ x [ajake7h6/7 + (Ujb, t Sj”(h - Eh) a,,/2) c6hj/6 
?I=0 

+ (S;(h - sh) uk t S,“(h -&h) b,/2 + ujck) E5h4/5 

t (Sj(h - Eh) uk t Si’(h - &h) b, t S,“(h - Eh) ck/2 t aid,) E’h’/4 

t (Sj(h - ch) b, t Sj(h - ch) ck + S;(h - eh) d,/2) &‘/3 

+ (Sj(h - Eh) Ck t Sj’(h - Eh) dk) E2h/2 + Sj(h - Eh) dkE], (A.8) 

where 

S,(r) = a,t3 + b,t2 + c,t + d,? for l=i orj. (A.9) 

For the discrete values of lag time given by 7 = mh where m is zero or integer, the 
expression (A.8) leads to Eq. (21). 
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